

Development of Methodology for Nitrogen Fluxes and Distribution

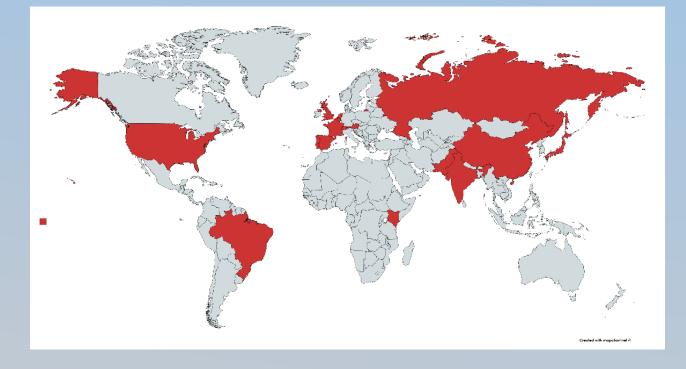
A1.3 /Component 1

Bill Bealey (UKCEH) & Kevin Hicks (SEI, University of York)

INMS-5 Meeting 7th July 2020

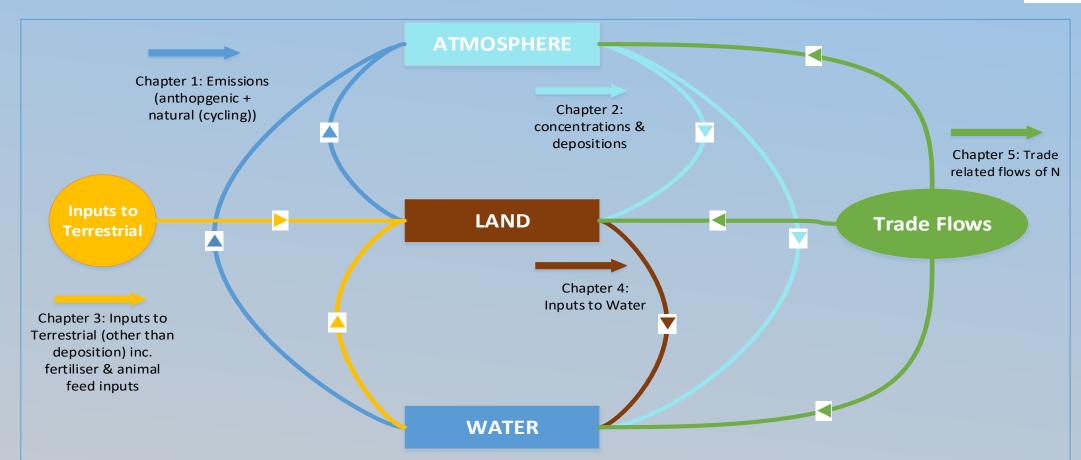
A1.3 Activities and Outputs

🌣 INMS	Oct- Dec 2017				Oct- Dec 2019				Oct- Dec 2020			Apr- June 2021					
Activity 1.3 Development of methodology for N fluxes and distribution															,		Ļ
		Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3
Task 1.3.1 Scoping of N flux and distribution methods (air, land, water, marine, trade)	w			₽	R			R									
Task 1.3.2 Conduct reviews of N flux and distribution methods for environ. compartments								R		R							
Task 1.3.3 Workshop on harmonizing methodologies for key N fluxes and distribution											w						
Task 1.3.4 Preparing guidance on N flux & distribution methods, plus international support															R		
Monitoring and Evaluation						R				R				R		4	R

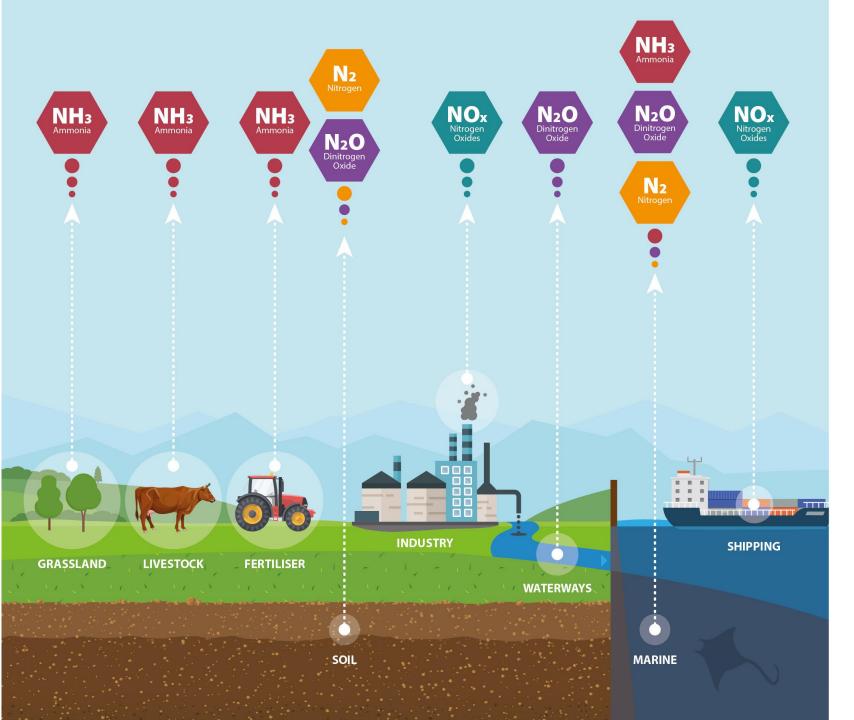

Key Outputs

- 1. Guidance Document ~100pp printed and online document
- 2. Online N Flux tool with associated method records database
- 3. Contributing chapter to the International Nitrogen Assessment

Timeline of Activities for Activity 1.3


Growing author network (n > 30)

Chapter N Flux Scheme



LEGEND

Guidance produced will be aimed at policy makers, their agencies and practitioners – 'the customers' to give them appropriate methodologies to measure key N flows

Nitrogen Pools

Nitogen Flows

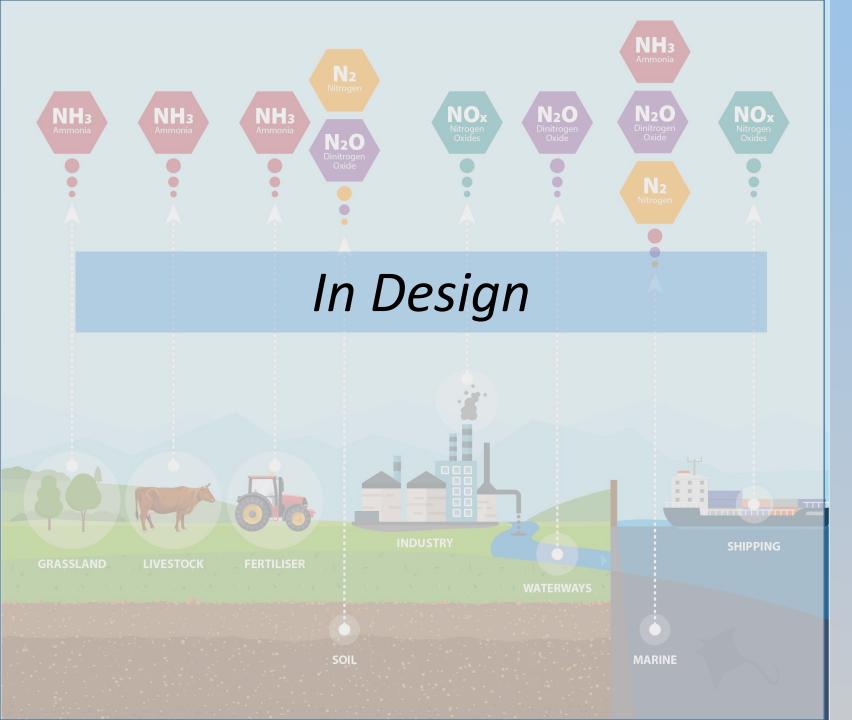
Chapter 1: Emissions to atmosphere

Lead Authors Jim Tang (Woods Hole) Muhammad Riaz (Faisalabad University) Tim van der Zee (RIVM)

Other contributors to date: *Pierre Cellier, Roy Wichink Kruit and colleagues , Tim Jickells, Stuart Painter, Wilfried Winiwater, Pascal Boeckx and Samuel Bodé, Ute Skiba and CEH colleagues, Umesh Kulshrestha, Kevin Hicks and SEI colleagues*

Chapter 1: Emissions to atmosphere

1. Introduction


- 2. Natural emissions: Land and water-based
 - 1. Land-based natural emissions (from forest, grasslands, wetlands, and tundra)
 - 2. Freshwater, coastal and estuarine and marine sources related to nutrient cycling
 - 3. Emissions from wild-fires
 - 4. NO from lightning
- 3. Anthropogenic N emissions
 - 1. Emissions related to industrial/combustion processes
 - 2. Agriculture & livestock-related emissions
 - 3. Emissions related to crop residue burning and prescribed fires
 - 4. Emissions from waste treatments: landfill, wastewater facilities
 - 5. Land-use change emissions, e.g. consequences of changing from grassland to arable

Considerations:

- Inorganic and organic emissions
- Emissions inventories and direct measurement of sources as well
- Precursor emissions for Tropospheric Ozone referenced

Gaps:

Authors for fires, wastewater, lightning, biogenic emissions

Chapter 2: Atmospheric nitrogen deposition

Lead Authors

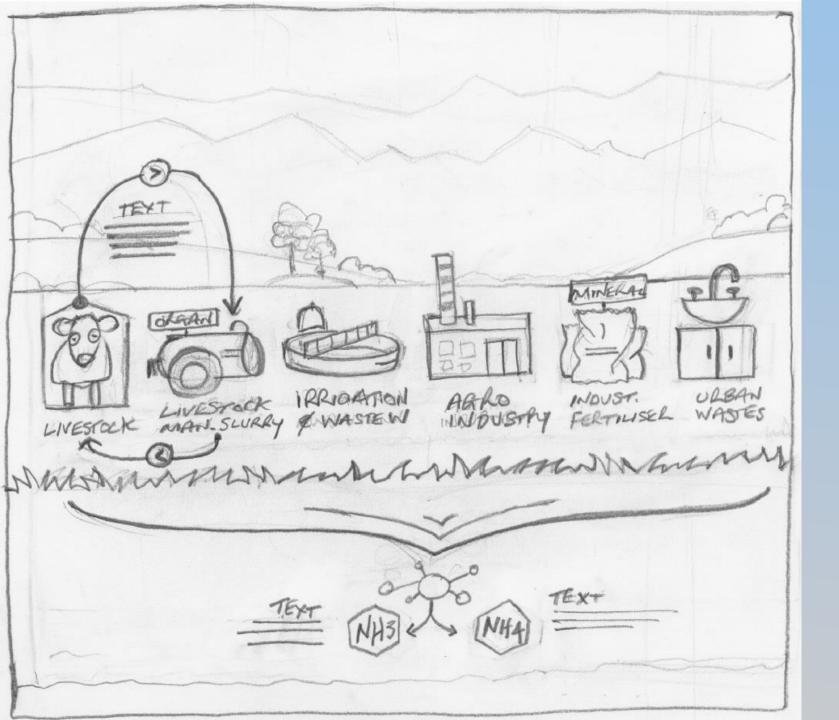
Roy Wichink Kruit (RIVM, the Netherlands), Corinne Galy-Lacaux (Toulouse Uni)

Other contributors to date: Marsailldh Twigg (CEH), Rocío Alonso – CIEMAT, Pierre Cellier (INRA), John Walker (US-EPA), Lorenzo Labrador (WMO), Helena Serrano (University of Lisbon), Umesh Kulshrestha (JNU New Delhi), Riaz Muhammad (University Faisalabad), Tim Jickells (University of East Anglea), Claire Delon (Toulouse Uni)

Chapter 2 : Atmospheric nitrogen deposition

1. Introduction

- 2. Wet deposition
 - 1. Direct flux measurements (e.g. wet-only sampler)
 - 2. Indirect flux measurements (e.g. Bulk Sampler, throughfall and stemflow)
 - 3. Modelling approaches
- 3. Dry deposition
 - 1. Direct flux measurements (e.g. gradient approach, Eddy covariance)
 - 2. Indirect flux measurements (e.g. passive & active sampling, remote sensing)
 - 3. Modelling approaches
- 4. Occult deposition
- 5. Total deposition
 - 1. Biomonitoring
 - 2. Model calculations (e.g. Eulerean & Lagrangian modelling)
 - 3. Combining measurements and model calculations (e.g. Inferential modelling, Measurement-Model Fusion (WMO)


🎄 INMS

Considerations:

- Focus on deposition processes
- Promote measurement of organic deposition and dry deposition
- Remote sensing included
- Tropospheric ozone deposition not covered directly

Gaps:

Authors for Eulerean and
 Lagrangian modelling, relaxed eddy
 accumulation for dry deposition

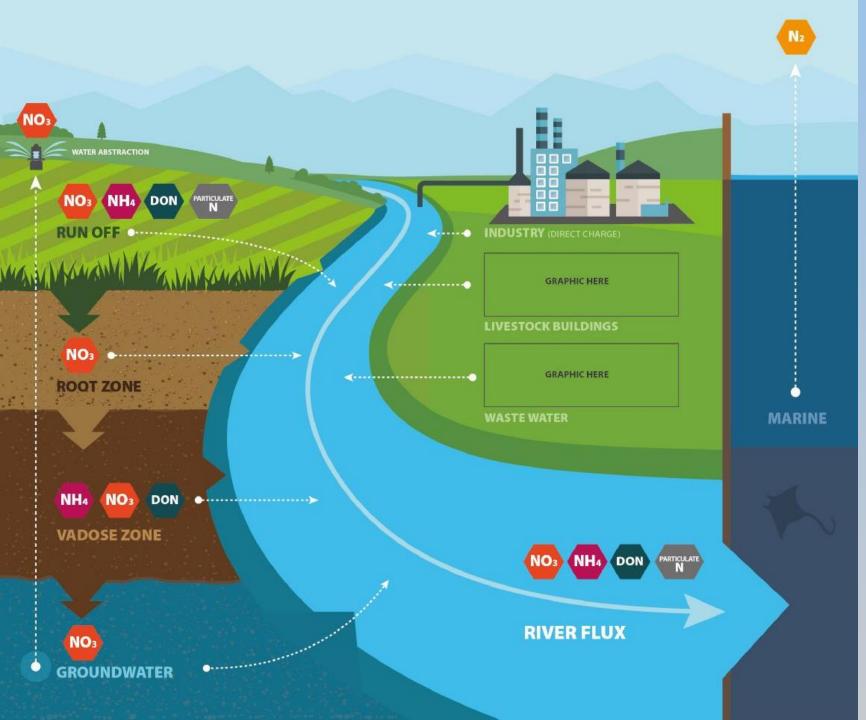
Chapter 3: Inputs to Terrestrial systems (other than deposition)

Lead Authors Pierre Cellier (INRAE) Joseph Gweyi (Kenyatta University)

Other contributors to date: Peter Ebanyat (Makerere University & IITA), Wilfried Winiwarter (IIASA)

Chapter 3: Inputs to Terrestrial systems (other than deposition)

- 1. Introduction Global sketch of the N input to terrestrial systems
- 2. The different sources
 - 1. Inputs of mineral fertilizers
 - Inputs of organic manures (e.g. Livestock manure, agroindustry wastes, waste water treatment sludges, AD digestates, household & garden organic wastes)
 - 3. Natural processes providing reactive N
 - 4. Grazing (e.g. livestock over managed grassland, animals over rangeland)
 - 5. BNF
- 3. Methods to estimate the different N input
 - 1. Anthropogenic inputs (methods at different scales, compendium of available data)
 - 2. Inputs from natural processes (methods at different scales, compendium of available data)



- Mineral and organic inputs
- Fertilizer addition can lead to atmospheric and aquatic fluxes covered in other chapters

Gaps:

- Author on BNF
- Include flooding as an input for nutrients?
- Figures on global organic manure use for introduction

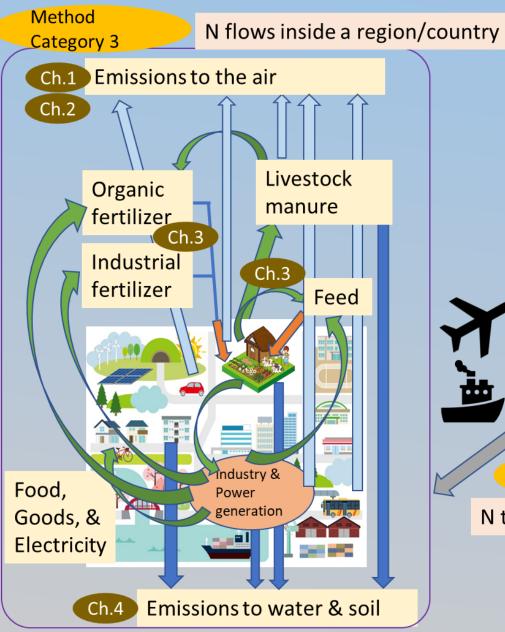
Chapter 4: Inputs to water bodies (other than deposition)

Lead Authors Stuart Painter (NOC) Rosario Cameira (U. Lisbon)

Other contributors to date: *Patrick Durand (INRAE) Rita Fragoso (U. Lisbon), Claudia Cordovil (U. Lisbon)*

Chapter 4: Inputs to water bodies (other than deposition)

- 1. Introduction
- 2. Direct (point source) discharge to water bodies
- 3. Surface/subsurface flows from diffuse sources
- 4. Rootzone flux to rivers
- 5. Abstraction (groundwater/aquifer to surface)
- 6. Rootzone to vadose zone flux
- 7. Vadose zone to aquifer flux
- 8. Submarine groundwater discharge
- 9. Riverine fluxes to the coastal ocean
- 10. Biological N₂ fixation as a flux to the ocean


Considerations:

- -N sources need to distinguish between agricultural, industrial and residential sectors
- BNF in ocean considered important
- Considers water flux first and then N content of that flux

Gaps:

- Too Eurocentric at moment?

Method

Category 2 N flows brought by food/goods (including virtual N/Nr emissions trade)

Chapter 5: Economywide anthropogenic flows of N-flows from trade and industry

Lead Authors Azusa Oita, NARO Japan Junko Shindo, Japan Camille Nolasco, INPE Brazil

Other contributors to date: Kazuyo Matsubae (Tohoku University, Japan) Baojing Gu (Zhejiang University) Jon Green (SEI, University of York) Allison Leach (University of New Hampshire)

Chapter 5: Economy-wide anthropogenic flows of Nflows from trade and industry

1. Introduction

2. Method Category 1

1. N embedded (i.e. physically present) in traded goods

3. Method Category 2

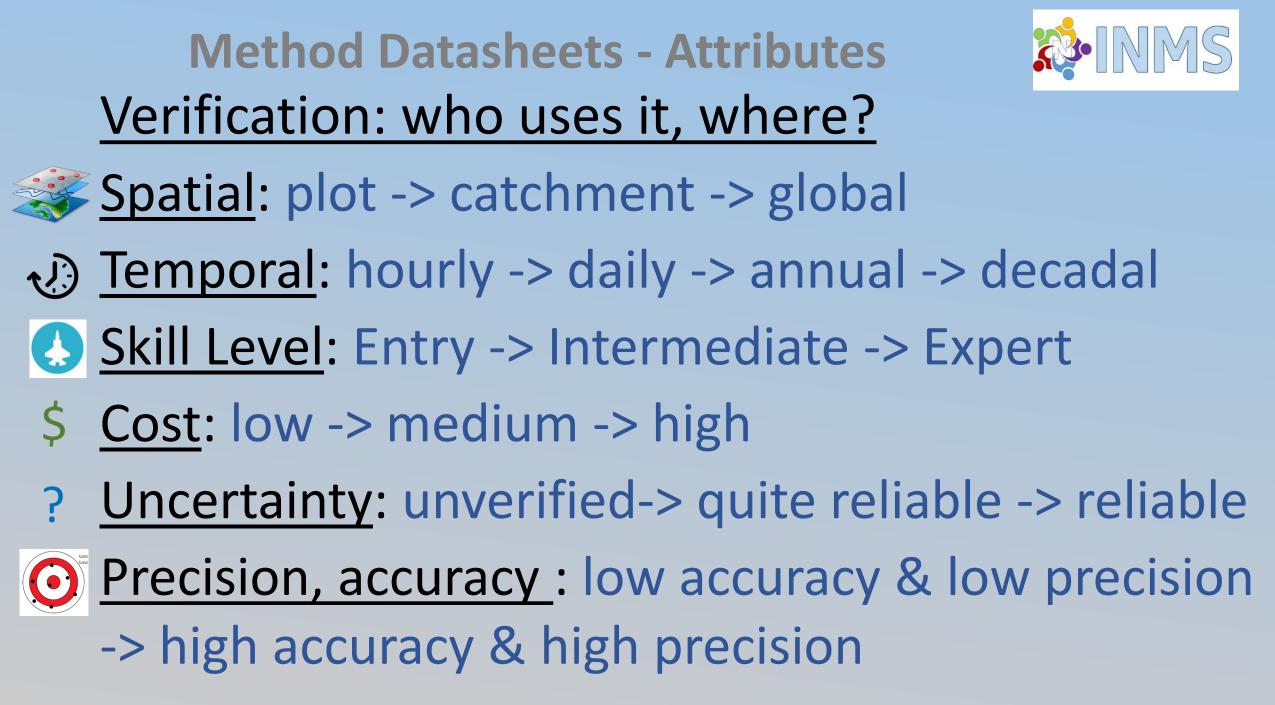
 Virtual N flows caused by the production and transport of internationally/domestically traded goods

4. Method Category 3

1. N flows in regions and countries

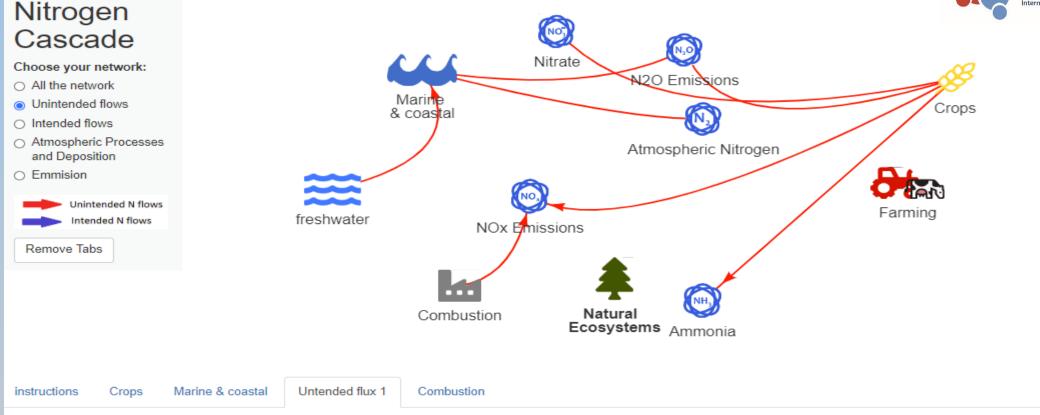
5. Related Indicators

 Pressure indicators (e.g. N footprint, full-chain (life-cycle) NUE)


Considerations:

- Assessing Nr flows to and from intermediate products (indirect flows for the final products)
- Quantifying Nr flows across country borders
- Needs for inventories related to Nr flows
 between industries and related international
 supply chains
- Pressure trade-offs between Nr emissions and other environmental pollution

Gaps:


-To help with MEAT model, Category 3, and fullchain NUE

- Felipe Pacheco (INPE, Brazil) and one more?

Online Flux Method Database tool

Untended flux 1

The methods in this flux are:

Title Of the Method Ar	Cost ++	Skill **	Uncertainty ++	Temporal 🕶	Spatial 🕶
Dissolved Inorganic Nitrogen in seawater	\$	© 🗇 😥	222	0	5et -
Oflux 2	\$\$	`	??	00	Secse

Dissolved Inorganic Nitrogen (NOx) (in seawater)

Method Description

The measurement of NOx (NO3- and NO2-) in marine waters is traditionally achieved by wet chemical methods that use a gas-segmented

Linkages to other INMS Activities

- A1.1: e.g. the efforts of the EPNB TFRN, N farm budget work, and N flow patterns, simplified and harmonized approach based on the CHANS model
- > A1.2: Covering Drivers–Pressures–States–Impacts–Responses (DPSIR) linkages

Pressures: N inputs to terrestrial system; Atmospheric processes & deposition; Inputs to water bodies; Trade N flow **Pressure Indicators**: N-Runoff; N-Leaching; N-dep; N2O, NOx, NH3 emission; N fertilizer input; Manufacturing N Addition; / N footprint

Component 3: Request of A3.1 (Regional demonstrations) to provide 'common indicators' between the demo regions

Timeline

- Priority 1 : Chapter text for Guidance
 Document <u>Review in October 2020</u>
- Priority 2 : Text for International Nitrogen Assessment Chapter – <u>January 2021 first</u> <u>review</u>
- Priority 3 : Method datasheets to populate online N flux tool

Thank – you!

Agenda Item 5 : INA global book chapter

Title: Approaches and challenges to assess nitrogen pressures and distribution

Including:

- Quantifying pressures and states (inc. History, Definitions, concepts and conventions);
- ii) Key fluxes to, in and from (a) air, (b) terrestrial systems, (c) aquatic systems, (d) products and trade; I
- iii) Measuring and monitoring;
- iv) Inventories of nitrogen pressures and flows;
- v) Relationship to global models.
- (c. 20-25 pages; links directly to INMS Activity 1.3).

