Title | Differential Metabolic Responses of Lettuce Grown in Soil, Substrate and Hydroponic Cultivation Systems under NH4+/NO3− Application |
Publication Type | Journal Article |
Year of Publication | 2022 |
Authors | Hameed MKhalid, Umar W, Razzaq A, Aziz T, Maqsood MAamer, Wei S, Niu Q, Huang D, Chang L |
Journal | Metabolites |
Volume | 12 |
Issue | 5 |
Date Published | 05/2022 |
Abstract | Nitrogen (N) is an essential element for plant growth and development. The application of a balanced and optimal amount of N is required for sustainable plant yield. For this, different N sources and forms are used, that including ammonium (NH4+) and nitrate (NO3−). These are the main sources for N uptake by plants where NH4+/NO3− ratios have a significant effect on the biomass, quality and metabolites composition of lettuce grown in soil, substrate and hydroponic cultivation systems. A limited supply of N resulted in the reduction in the biomass, quality and overall yield of lettuce. Additionally, different types of metabolites were produced with varying concentrations of N sources and can be used as metabolic markers to improve the N use efficiency. To investigate the differential metabolic activity, we planted lettuce with different NH4+/NO3− ratios (100:0, 75:25, 50:50, 25:75 and 0:100%) and a control (no additional N applied) in soil, substrate and hydroponic cultivation systems. The results revealed that the 25% NH4+/75% NO3− ratio increased the relative chlorophyll contents as well as the biomass of lettuce in all cultivation systems. However, lettuce grown in the hydroponic cultivation system showed the best results. The concentration of essential amino acids including alanine, valine, leucine, lysine, proline and serine increased in soil and hydroponically grown lettuce treated with the 25% NH4+/75% NO3− ratio. The taste and quality-related compounds in lettuce showed maximum relative abundance with the 25% NH4+/75% NO3− ratio, except ascorbate (grown in soil) and lactupicrin (grown in substrate), which showed maximum relative abundance in the 50% NH4+/50% NO3− ratio and control treatments, respectively. Moreover, 1-O-caffeoylglucose, 1,3-dicaffeoylquinic acid, aesculetin and quercetin-3-galactoside were increased by the application of the 100% NH4+/0% NO3− ratio in soil-grown lettuce. The 25% NH4+/75% NO3− ratio was more suitable in the hydroponic cultivation system to obtain increased lettuce biomass. The metabolic profiling of lettuce showed different behaviors when applying different NH4+/NO3− ratios. Therefore, the majority of the parameters were largely influenced by the 25% NH4+/75% NO3− ratio, which resulted in the hyper-accumulation of health-promoting compounds in lettuce. In conclusion, the optimal N applications improve the quality of lettuce grown in soil, substrate and hydroponic cultivation systems which ultimately boost the nutritional value of lettuce. |
DOI | 10.3390/metabo12050444 |